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Abstract. We consider newform vectors in cuspidal representations of p-adic general linear
groups. We extend the theory from the complex setting to include ℓ-modular representations
with ℓ ̸= p, and prove that the conductor is compatible with congruences modulo ℓ for
(ramified) supercuspidal ℓ-modular representations and for depth zero cuspidals. In the
complex and modular setting, we prove explicit formulae for depth zero and unramified
minimax cuspidal representations, in Bushnell-Kutzko and Whittaker models.
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1. Introduction

Newforms. Casselman [Cas73] adelized the classical theory of newforms, translating them
into the language of automorphic representations for GL(2). Jacquet–Piatetski-Shapiro–
Shalika [JPSS81, Jac12] and Matringe [Mat13] generalized this picture to GL(n), showing
the existence and uniqueness of newforms for generic C-representations of Gn = GLn(F),
where F is a non-archimedean local field of residue characteristic p. (For archimedean new-
form theory see [Hum24].) Jacquet–Piatetski-Shapiro–Shalika and Matringe consider a de-
creasing family of compact open subgroups (Kn(m))m∈N of Gn, whose intersection consists
of matrices in GLn(oF) with final row

(
0 · · · 0 1

)
, where oF denotes the ring of integers

of F. Amazingly, it turns out that for π a ramified generic C-representation of Gn, there
exists a (unique) positive integer c(π) such that

πKn(m) ≃

{
C if m = c(π);

0 if m < c(π).

A non-zero vector of πK(c(π)) is called a newform. Locally, newforms and their realizations
in Whittaker models have proven useful as test vectors; see, for example, [JPSS81], [AM17],
[Jo23], [Hum21].
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Cuspidal representations. Let R now denote an algebraically closed field of characteristic ℓ ̸=
p. Harish-Chandra’s approach to classifying the irreducible R-representations begins by con-
sidering the cuspidal R-representations (resp. supercuspidal R-representations) that is the
representations which do not appear as a quotient (resp. subquotient) of an R-representation
parabolically induced from an irreducible R-representation of a parabolic subgroup. Supris-
ingly, by work of Bushnell–Kutzko [BK93] extended to the modular setting by Vignéras
[Vig96], it turns out that all cuspidal R-representations of Gn are compactly induced: for
every cuspidal R-representation π of Gn there exists an (explicitly constructed) pair (J,λ),
consisting of a compact-mod-centre subgroup J of Gn and an irreducible representation λ
of J, in Bushnell–Kutzko’s list such that π ≃ indGnJ (λ).

Paskunas–Stevens [PS08] use Bushnell and Kutzko’s models to construct explicit Whittaker
functions with small support in the Whittaker model of a cuspidal representation of Gn. These
functions have also proved useful as test vectors; see for example [KM19], [AKM+21].

. These two pictures lead to the following natural questions which we discuss in the paper:

(1) Describe the (unique up to scalar) newform in the Bushnell–Kutzko model of a cus-
pidal C-representation of Gn.

(2) Compare the local test vectors arising from the globally motivated newform theory
and the locally motivated Bushnell–Kutzko theory.

(3) Does the theory of newforms extend to R-representations?

Our results. We approach these questions explicitly in the special cases of depth zero and
minimax cuspidal representations. Note that this infinite family is reasonably broad, for
example every cuspidal representation π of Gk for k prime which is twist minimal (i.e., it
is of minimal depth among the family of representations obtained from π by twisting by a
character) is either minimax or depth zero.

For question (3), the existence of newforms in a cuspidal R-representation π follows by
reduction modulo ℓ (note that for a cuspidal R-representation over an algebraically closed
field of characteristic ℓ, there exists an unramified twist of it defined over Fℓ). By a lifting
argument we first show:

Proposition 3.4. Let π be an integral supercuspidal Qℓ-representation of Gn for n ⩾ 2, which
has supercuspidal reduction modulo ℓ, then we have an equality of conductors c(π) = c(rℓ(π)).

We later extend this to include all integral depth zero supercuspidal Qℓ-representations.
For uniqueness of newforms in positive characteristic, we prove this explicitly using a Mackey
theory and lifting argument for depth zero cuspidal Fℓ-representations and unramified mini-
max cuspidal Fℓ-representations.

Question (1) was first considered for cuspidal C-representations of Gn of depth zero by
Reeder [Ree91], where he shows in the model of a depth zero cuspidal compactly induced
from F×Kn where Kn = GLn(oF) that a newform vector has support in F×KnΣnKn(c(π))
where

Σn = diag
(
ϖn−1

F , ϖn−2
F , . . . , 1

)
.

We give a new proof of Reeder’s result which works more generally for depth zero cuspidal R-
representations (also establishing existence and uniqueness of newforms directly for depth zero
cuspidals R-representations without using Jacquet–Piatetski-Shapiro–Shalika’s or Matringe’s
work), and use this to show the newform is an average of the Bessel vector considered by
Paskunas and Stevens. Using this expression we obtain formulae for the matrix coefficients
and Whittaker functions associated to newforms in depth zero cuspidal R-representations, in
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particular showing they are an average of the corresponding Paskunas–Stevens vectors giving
an answer to (2) in this case.

For a cuspidal representation τ of GLn(kF) we write Bτ,ψ for its associated Bessel function

(see Section 2.2). Our main depth zero theorem is:

Theorem (Theorem 4.1, Propositions 5.2 and 5.5). Let n ⩾ 2, and π be a depth zero cuspi-
dal R-representation containing the cuspidal R-type (K, τ).

(1) (a) (existence, uniqueness, and support of newforms) the conductor is given by c(π) =
n,

HomR[K(c(π))](1, π) ≃ R,

and the unique up to scalar (non-zero newform) fnew ∈ πKn(n) has support

supp(fnew) ⊆ ZnKΣnK(n).

(b) (explicit formula in terms of Bessel functions) The function fnew ∈ πKn(n) is
characterized by its support and

fnew(Σn) =
∑

b∈Bop
n−1(kF)

b ·Bτ,ψ.

Moreover, there exists a unique R-Haar measure on Kn(n) such that, for all g ∈
G,

fnew(g) =

∫
K(n)

Bτ̃ (gkΣ
−1
n )dk,

where Bτ̃ is the Bessel vector in indGnZnKn
(τ̃) (see Section 4).

(2) (Depth zero matrix coefficients of newforms) Let y1, . . . , yr be a set of coset repre-
sentatives of KZ\KZΣK(n). The matrix coefficient cfnew,f∨new is non-zero, bi-K(n)-

invariant, has support supp(cfnew,f∨new) ⊆ ZK(n)KΣK(n) and for g ∈ KΣ we have

cfnew,f∨new(g) =
∑

(i,j)∈Ig

|G(Fq)|
|U(Fq)|dim(τ)

∑
b,b′∈Bop

n−1(Fq)

Bτ,ψ(bΣyjgy
−1
i Σ−1b′),

where Ig = {(i, j) ∈ Z2 | 1 ⩽ i, j ⩽ r and g ∈ y−1
j Z(KΣ)yi}.

(3) (Depth zero Whittaker newforms) Suppose ψ : F → C× has conductor oF, denote
by ψ its extension to a non-degenerate character of the upper triangular unipotent
subgroup Un of Gn via precomposing with u 7→

∑n−1
i=1 ui,i+1, and let Wπ,new,ψ denote

the Whittaker newform of π (normalized at the identity). Then

supp(Wπ,new,ψ) ⊆ ZnUnK
ΣnK(n),

and for g ∈ G,

Wπ,new,ψ(g) =

∫
K(n)

W
π,Gel,ψΣ−1

n
(ΣngkΣ

−1
n )dk

for an appropriately normalized R-Haar measure dk on K(n), where W
π,Gel,ψΣ−1

n
de-

notes Gelfand’s explicit Whittaker function for π (cf. [PS08]).

A minimax cuspidal R-representation π of Gn has a Bushnell–Kutzko model as an induced
representation from a compact-mod-centre subgroup J = E×U⌊(m+1)/2⌋(Λ) where E/F is a

degree n field extension embedded in Mn(F), and U⌊(m+1)/2⌋(Λ) is a filtration subgroup of a



4 JOHANNES GIRSCH AND ROBERT KURINCZUK

parahoric subgroup of Gn associated to the point Λ in the building of G (for some specific m
given by the input data for π, see Section 6.2).

One invariant attached to π is its depth, in terms of the above inducing data this is given
by m/e(E/F). The special case of minimal depth m = 1, e(E/F) = n the representations are
called simple supercuspidals and questions 1 and 2 are answered in [KL15].

Our main minimax theorem on explicit vectors is Theorem 6.5, this gives an analogue of the
first part of our main depth zero theorem for unramified minimax cuspidal representations. In
a future version, we will obtain from this an analogous expression for the associated Whittaker
newform in this case.

In further future work, we consider the non-cuspidal case of newforms in generic ℓ-modular
representations.

Acknowledgements. Both authors were supported by EPSRC grant EP/V001930/1, and the
second author was supported by the Heilbronn Institute for Mathematical Research. We
thank Nadir Matringe and Shaun Stevens for useful conversations.

2. Notation

2.1. Smooth representations. Let F be a non-archimedean local field, with ring of inte-
gers oF. Let pF = (ϖF) denote the unique maximal ideal of oF, and kF = oF/pF the residue
field – a finite field of size q a power of p.

Let Gn = GLn(F), Kn = GLn(oF), Zn ≃ F× denotes the centre of Gn. We drop the
subscript n when it is clear, write G = GLn(F), K = Kn etc.

Let R be an algebraically closed field of characteristic ℓ ̸= p. Let H be a locally profinite
group. By an R-representation of H we mean a smooth representation of H on an R-vector
space.

For a closed subgroup J of H, a smooth R-representation (π,V) of J, and h ∈ H, we write

- πh for the smooth representation (πh,V) of Jh := h−1Jh, where πh : h−1jh 7→ π(j).
- hπ for the smooth representation (hπ,V) of hJ := hJh−1, where πh : hjh−1 7→ π(j).

For any commutative ring S and positive integers i, j let Mi×j(S) be the ring of i × j
matrices with entries in S. We will write 1j for the identity matrix in Mj×j(S).

2.2. Bessel functions. Let τ be a cuspidal R-representation of GLn(kF). Let B(kF) be
the standard Borel subgroup of GLn(kF) of upper triangular matrices, with unipotent rad-
ical U(kF). Fix a non-trivial character ψ : kF → R×, which we extend to a non-degenerate
character ψ : U(kF) → R× defined by ψ(u) = ψ(u1,2 + · · ·+ un−1,n).

Then τ is generic:

HomR[GLn(kF)](τ, ind
GLn(kF)
U(kF)

(ψ)) ≃ R,

and we write W(τ, ψ) for its Whittaker model (that is the image of any non-zero morphism

in ind
GLn(kF)
U(kF)

(ψ))).

The Bessel function Bτ,ψ ∈ W (τ, ψ) is the unique ψ-bi-invariant function in W (τ, ψ)

with Bτ,ψ(1) = 1. We record the following useful properties of Bτ,ψ which follow from

[Gel70] and the compatibility of the Bessel function with reduction modulo ℓ:

(B1) Let Pn(kF) be the standard mirabolic subgroup of GLn(kF) of all matrices with last
row ( 0 ··· 0 1 ). Then for p ∈ Pn(kF), the function Bτ,ψ(p) is nonzero if and only if

p ∈ U(kF).
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(B2) Let χτ denote the trace character of τ . Then Bτ,ψ(a) = |U(Fq)|−1
∑

U(Fq) ψ
−1

(u)χτ (au),

for a ∈ GLn(kF).
(B3) For z ∈ k×F and a ∈ GLn(kF), we have Bτ,ψ(az) = ωτ (z)Bτ,ψ(a).

(B4) Let τ∨ denote the contragredient of τ , for a ∈ GLn(kF), we haveBτ,ψ(a
−1) = B

τ∨,ψ
−1(a).

3. Newforms for cuspidal representations

3.1. Conductors and newforms.

Definition 3.1. Let π be a generic R-representation of Gn with n ⩾ 2.

(1) For m ∈ N, let Kn(m) denote the conductor subgroup of Gn, defined by

Kn(m) =
{(

a b
c d

)
∈ Kn : c ∈ M1×(n−1)(p

m
F ), d ∈ (1 + pmF )

}
.

Set Kn(0) = Kn = GLn(oF).

(2) If there is a nonnegative integer such that πKn(m) ̸= 0, then we define the conductor

c(π) of π to be the minimal (non-negative) m such that πKn(m) ̸= 0.
(3) We say that π is unramified if c(π) = 0 and ramified otherwise.
(4) Let V be the underlying R-vector space of π considered as an R[Gn]-module via π. We

call an element of VKn(c(π)) a newform for π.

The existence of newforms for generic C-representations (or equivalentlyQℓ-representations)
is established by Jacquet–Piatetski-Shapiro–Shalika, with a different proof given by Matringe:

Theorem 3.2 ([JPSS81, Jac12, Mat13]). Let π be a generic Qℓ-representation of Gn. The

conductor c(π) exists and, moreover, πKn(c(π)) is one-dimensional.

Let π be a cuspidal Qℓ-representation of Gn with n ⩾ 2, then by [Bus87],

(⋆) c(π) = n(1 + d(π)),

where d(π) is the depth of π.

3.2. Conductors modulo ℓ. The existence of newforms for cuspidal Fℓ-representations fol-
lows immediately by reduction modulo ℓ, and if π is an integral Qℓ-representation of Gn we
have c(rℓ(π)) ⩽ c(π).

Remark 3.3. Let π̃, π̃′ be integral cuspidal Qℓ-representations of Gn with n ⩾ 2. Sup-
pose rℓ(π̃) = rℓ(π̃

′), then π̃ and π̃′ have the same depth, and hence the same conductor by
Bushnell’s equation (⋆).

Proposition 3.4. Let π be a supercuspidal Fℓ-representation of Gn with n ⩾ 2, and π̃ a
supercuspidal lift of π. Then c(π) = c(π̃).

This essentially follows from adapting the argument of Cui–Lanard–Lu [CLL23, Theorem
3.4] (who show one can lift distinction by a closed subgroup in this setting – we apply similar
ideas to lifting invariants by Kn(m)). In fact, the approach of ibid. simplifies in our case
as Kn(m) is a compact open subgroup of Gn, and we give the full details:

Proof. We have already seen in Remark 3.3 that c(π̃) is independent of the choice of lift π̃,
and c(rℓ(π)) ⩽ c(π). It thus suffices to construct a lift π̃ with a vector invariant by Kn(c(π)).
We can choose a model from type theory for π :

π ≃ indGn
JE×(Λ),
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with Bushnell–Kutzko–Vignéras supercuspidal type (JE×,Λ), where J is the maximal compact
open subgroup of JE× and E is a field extension of F embedded in Mn(F). As in [BK93],
summarised and extended to the modular setting in [Vig96, III], the compact open subgroup J
is constructed together with a pro-p normal subgroup J1 of J such that :

(1) Λ|J = κ ⊗ τ where κ is a “beta extension” of an irreducible “Heisenberg representa-

tion” η of J1;
(2) τ is trivial on J1 and identifies with an irreducible supercuspidal representation

of GLs(kE) ≃ J/J1 where s = s(π) is an invariant of π called its relative degree.

Let m = c(π), i.e. πKn(m) ̸= 0. Then by Mackey Theory we have :

0 ̸= HomFℓ[Kn(m)](1, ind
Gn
JE×(Λ)) ≃ HomFℓ[Kn(m)](1,

⊕
ind

Kn(m)
(JE×)g∩Kn(m)

(Λg))

≃ HomFℓ[Kn(m)](1,
⊕

ind
Kn(m)
Jg∩Kn(m)(Λ

g)),

as Kn(m) is compact hence (JE×)g ∩Kn(m) = Jg ∩Kn(m). Hence, there exists g ∈ G, such
that

0 ̸= HomFℓ[Kn(m)](1, ind
Kn(m)
Jg∩Kn(m)(Λ

g)) ≃ HomFℓ[Jg∩Kn(m)](1, κ
g ⊗ τ g).

By conjugating the type which does not change the isomorphism class of π, we can assume
that the trivial double coset contributes a non-zero Hom-space. Now

0 ̸= HomFℓ[J∩Kn(m)](1, κ⊗ τ) ↪→ HomFℓ[J∩Kn(m)](1, κ⊗ (Pτ ⊗ Fℓ)),

where Pτ is the projective Zℓ[GLs(kE)]-envelope of τ . Moreover, as τ is supercuspidal,

(1) Pτ ⊗ Fℓ is in fact τ -isotypic;
(2) Pτ is cuspidal, with Pτ ⊗ Qℓ ≃

⊕
τ̃ where the sum is over all supercuspidal Qℓ-

representations τ̃ of GLs(kE) with rℓ(τ̃) = τ .

We lift κ to an integral beta extension κZℓ , then the representation κZℓ ⊗ Pτ is a projective

envelope of κFℓ ⊗ τ in the category of Zℓ[J]-modules – cf. [Hel16, Lemma 4.8]. Moreover,

if R = Qℓ or R = Fℓ we have

HomZℓ[J∩Kn(m)](1Zℓ , κZℓ ⊗ Pτ )⊗ R ≃ HomR[J∩Kn(m)](1R, (κ⊗ Pτ )⊗ R),

and HomZℓ[J∩Kn(m)](1Zℓ , κZℓ ⊗ Pτ ) is ℓ-torsion free (as κZℓ ⊗ Pτ is ℓ-torsion free).

Thus, as HomZℓ[J∩Kn(m)](1, κZℓ ⊗ Pτ )⊗ Fℓ ̸= 0, we have

0 ̸= HomZℓ[J∩Kn(m)](1, κZℓ ⊗ Pτ )⊗Qℓ ≃
⊕

τ̃ :rℓ(τ̃)=τ

HomQℓ[J∩Kn(m)](1, κQℓ ⊗ τ̃).

Hence there exists τ̃ such that HomQℓ[J∩Kn(m)](1, κQℓ ⊗ τ̃) ̸= 0, and reversing the Mackey

theory over Qℓ for π̃ = indGn
JE×(Λ̃), for any extension Λ̃ of κQℓ ⊗ τ̃ to JE× (in particular for a

lift π̃ of π), we find that c(π) = m ⩾ c(π̃), hence c(π) = c(π̃). □

Remark 3.5. We expect that the proposition holds for the more general case of cuspidal Fℓ-
representations of Gn with n ⩾ 2, and will prove this in the special case of depth zero cus-
pidal Fℓ-representations. However, for a cuspidal non-supercuspidal Fℓ-representation there
exist irreducible non-supercuspidal integral Qℓ-representations which contain the cuspidal rep-
resentation as a subquotient on reduction modulo ℓ, and the conductors of these can differ
as the following example shows: Let G2 = GL2(F) and for a character χ of F× denote
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by St2(χ) the generalized Steinberg Qℓ-representation which is the unique irreducible quo-

tient of χν1/2 × χν−1/2. We have

c(St2(χ)) =

{
1 if χ is unramified,

2 if χ is ramified.

Suppose χ is integral unramified and ℓ | q+1. Then rℓ(St2(χ)) contains a depth zero cuspidal
non-supercuspidal subquotient π (see for example [Vig89]) which has conductor 2 by Theorem
4.1. However, for such an unramified χ, 1 = c(St2(χ)) ̸= c(π) = 2.

Notice also the analogue of Proposition 3.4 for characters of G1 only holds for ramified
characters. This leads us to expect that subtleties occur whenever the supercuspidal support
of a generic representation contains an unramified character.

3.3. Newforms vectors in models. With applications to test vector problems in mind,
one can ask for an explicit description of the newform in an explicit model of a representation.

3.3.1. Whittaker models.

Theorem 3.6 ([Mat13], [Miy14]). Let π be a generic C-representation of Gn with n ⩾ 2,
and ψ : F → C× of conductor 0. There exists a unique Whittaker function Wnew,π ∈W (π, ψ),
which is right Kn−1-invariant, and which satisfies, for t = diag(t1, . . . , tn−1) ∈ Tn−1 the
equality :

Wnew,π(diag(t, 1)) =

{
W0,πu(tr)ν(tr)

n−r
2
∏
r<i<n 1o×F

(ti) when r ⩾ 1;∏
1<i<n 1o×F

(ti) when r = 0;

where tr = diag(t1, . . . , tr) ∈ Tr, and πu is an unramified standard module of Gr associated
to π in [Mat13, Definition 1.3].

This formula characterizes the local newform (normalized at 1) in the Whittaker model.
Note that, if π is cuspidal (and not an unramified character of G1), then πu is trivial.

For a generic Qℓ-representation π, the map ResPn : W → W|Pn on W (π, ψA) is injec-

tive, and we denote its image (which gives the Kirillov model for π) by K(π, ψ). By the
Iwasawa decomposition Pn = UnTn−1Kn−1, the Matringe–Miyauchi formula gives the de-
scription of ResPn(Wnew,π), i.e. describes its image in the Kirillov model K(π, ψ). Hence, by
right Kn(c(π))-invariance, it describes Wnew,π on PnKn(c(π)).

3.3.2. Matrix coefficients in the cuspidal case. Let (π,V) be a cuspidal R-representation
of Gn, with contragredient (π∨,V∨), and let c(π), c(π∨) denote their conductors. Let v∨new ∈
(V∨)K(c(π)) be non-zero, aka a newform in π∨. We have the standard intertwiner

π → indGZ (ωπ)

v 7→ cv,v∨new : g 7→ ⟨π(g)v, v∨new⟩.

Lemma 3.7. Let π be a cuspidal R-representation such that c(π) = c(π∨), and πK(c(π)) ≃
(π∨)K(c(π)) ≃ R (known for example, if R = Qℓ by Theorem 3.2).

(1) If v ∈ VK(c(π)) is non-zero then the coefficient cv,v∨new is non-zero.
(2) Set cπ,new = cvnew,v∨new . For k, k′ ∈ K(c(π)), and g ∈ G, we have

cπ,new(kgk
′) = cπ,new(g),

and cπ,new is the unique matrix coefficient of π satisfying this up to scalar.
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Proof. Note that ωπ |K(c(π))∩Z= 1, and the map

π ⊗R π
∨ → indGZ (ωπ),

is an injective (G×G)-module morphism for the action (g, g′) ·f(x) = f(g′−1xg) on indGZ (ωπ).
By left exactness of K(c(π))×K(c(π))-invariants, this induces an injective morphism

R = πK(c(π)) ⊗ (π∨)K(c(π)) = (π ⊗ π∨)K(n)×K(n) ↪→ (indGZ (ωπ))
K(c(π))×K(c(π)).

This establishes the first statement and the second follow from this. □

3.4. ε-factor conductor. Let ψ : F → C× be a non-trivial character. Let π be an ir-
reducible C-representation of Gn. Then we have a local Godement–Jacquet epsilon factor
associated to π : ε(s, π, ψ) which is a monomial in q−s, and we can write

ε(s, π, ψ) = ε(0, π, ψ)q−cε,ψ(π)s.

for a non-negative integer cε,ψ(π) called the Godement–Jacquet conductor.

Proposition 3.8 ([JPSS81]). Let π be an irreducible generic C-representation of Gn. Then

c(π) = cε,ψ(π)− nc(ψ).

Replacing q−s with an indeterminate X and working with R-valued Haar measures, Mı́nguez
extends the Godement–Jacquet construction to R-representations in [M1́2] (and the Rankin–
Selberg construction is extended to R-representations in [KM17]). The epsilon factor in this
setting is a monomial in X. And with this change of variable, for π a generic R-representation
of Gn, for a non-trivial character ψ : F → R×, we can define cε,ψ(π) ∈ Z by

ε(X,π, ψ) = aXcε,ψ(π),

for some a ∈ R×.
For cuspidal representations, the epsilon factor agrees with the gamma factor which is

compatible with congruences mod ℓ where we first fix a non-trivial character ψ : F → Zℓ
×

(cf. [M1́2, KM17]), hence we obtain from Propositions 3.4 and 3.8:

Lemma 3.9. Let ψ : F → Zℓ
×

be a non-trivial character.

(1) Let π̃ be an integral Qℓ-cuspidal of Gn, then cε,ψ⊗Qℓ(π) = cε,ψ⊗Fℓ(rℓ(π̃)).

(2) Let π be a supercuspidal Fℓ-representation of Gn. Then c(π) = cε,ψ⊗Fℓ(π)−nc(ψ⊗Fℓ).

4. Newform vectors in depth zero cuspidal representations

Let π be a depth zero cuspidal R-representation of Gn. Choose a Moy–Prasad–Morris–
Vignéras model [Vig96, III 3.3] for π as compactly induced

indGnZnKn
(τ̃),

where τ̃ = ωπτ and τ is a cuspidal representation of GLn(kF) which we identify with its
Whittaker model W (τ, ψ) with respect to (Un(kF), ψ) where Un denotes the standard upper

triangular unipotent of GLn. We define the Bessel vector Bτ̃ ∈ indGnZnKn
(τ̃) by supp(Bτ̃ ) ⊆

ZnKn, and
Bτ̃ (zk) = ω(z) k ·Bτ,ψ,

for all z ∈ Zn, k ∈ Kn. Notice that for all u ∈ (Kn ∩ Un)K
1
n we have Bτ̃ (−u) = ψ(u)Bτ̃ (−),

and Bτ̃ is the unique up to scalar vector in ((Kn ∩ Un)K
1
n, ψ)-isotypic space (cf. [PS08,

Corollary 4.5]).
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For n > 2, we write Bop
n−1(kF) for the Borel subgroup of lower triangular matrices in GLn−1(kF)

which we consider as a subgroup of GLn(kF) via the standard embedding g 7→
(
g 0
0 1

)
of GLn−1(kF)

in GLn(kF). We set Bop
1 (kF) = GL1(kF), which we also consider as a subgroup of GL2(kF)

by the standard embedding.
Let

Σn =

ϖn−1
F

ϖn−2
F

. . .
1

 .

The aim of this section is to prove:

Theorem 4.1. Let n ⩾ 2, and π = indGnZnKn
(τ̃) be a depth zero cuspidal R-representation

with cuspidal R-type (Kn, τ).

(1) (newforms) Then c(π) = n, HomR[K(c(π))](1, π) ≃ R, and the unique up to scalar

(non-zero newform) fnew ∈ πKn(n) has support supp(fnew) ⊆ ZnKnΣnKn(n).
(2) (Reeder’s oldforms) for m > c(π) = n

dimR(HomR[Kn(m)](1, π)) =

(
m− 1
n− 1

)
.

(3) (explicit formula in terms of Bessel functions) The function fnew ∈ πKn(n) is charac-
terized by

fnew(Σn) =
∑

b∈Bop
n−1(kF)

b ·Bτ,ψ.

Moreover, there exists a unique R-Haar measure on Kn(n) such that, for all g ∈ G,

fnew(g) =

∫
Kn(n)

Bτ̃ (gkΣ
−1
n )dk.

Remark 4.2. In the special case, R = C, parts (1) and (2) follows from Reeder in [Ree91,
(2.3) Example] which uses: the existence and uniqueness of newforms [JPSS81, Jac12, Mat13],
and the prior knowled c(π) = n [Bus87]. For GL2(F) this is made further explicit [KR14]
giving an explicit formula. In this section we will give a self-contained proof (just using the
basic tools of Mackey theory) of this theorem, which applies equally well to the broader case
including ℓ-modular representations where R has positive characteristic ℓ ̸= p.

4.1. Mackey theory. For a positive integer m, by Mackey theory we have :

0 ̸= HomR[Kn(m)](1, ind
Gn
ZnKn

(ωπτ)) ≃ HomR[Kn(m)](1,
⊕

ZnKn\Gn/Kn(m)

ind
Kn(m)
(ZnKn)g∩Kn(m)(ω

g
πτ

g))

≃ HomR[Kn(m)](1,
⊕

ZnKn\Gn/Kn(m)

ind
Kn(m)

Kgn∩Kn(m)
(τ g)),

as Kn(m) is compact hence (ZnKn)
g∩Kn(m) = Kn∩Kn(m). We are thus reduced to studying

the spaces

HomR[Kn(m)](1, ind
Kn(m)

Kgn∩Kn(m)
(τ g)) ≃ HomR[Kgn∩Kn(m)](1, τ

g),

over a set of double coset representatives for ZnKn\Gn/Kn(m). Equivalently we study the
spaces

HomR[Kn∩gKn(m)](1, τ) ≃ Hom
R[Kn∩gKn(m)]

(1, τ)

where Kn ∩ gKn(m) denotes the image of Kn ∩ gKn(m) in Kn/K
1
n.
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4.2. Coset representatives. For positive integers i and j and a commutative ring S, let

Ni,j(S) =
{(

1i
X 1j

)
∈ M(i+j)×(i+j)(S) : X ∈ Mj×i(S)

}
.

be the unipotent radical of the lower triangular standard parabolic with block sizes i and j.
We introduce the following notation:

- If v is an element of Mi×j(oF/p
m
F ) we write ṽ for a lift of v in Mi×j(oF). If v = 0 we choose

ṽ = 0.
- For any matrix X ∈ Mi×j(oF) we write X ∈ Mi×j(kF) for its reduction modulo pF.

- For any subset S = {si}i∈I ⊆ Mi×j(oF) we will write S for {si}i∈I .

Lemma 4.3. For n ⩾ 2 and m ⩾ 1 the union of

A1
n =

{(
1n−1 0
ṽ x̃

)
| v ∈ M1×(n−1)(oF/p

m
F ), x ∈ (oF/p

m
F )

×}
and the set

A2
n =

{(
1n−j−1

w̃1 w̃2 w̃3 x̃
1j−1

1

)
| w1 ∈ M1×(n−j−1)(oF/p

m
F ), w2 ∈ pF /p

m
F ,

w3 ∈ M1×(j−1)(pF /p
m
F ), x ∈ (oF/p

m
F )

×

}
is a set of coset representatives for Kn/Kn(m).

Proof. Note that Kn = GLn(oF) acts on M1×n(oF/p
m
F ), i.e. row vectors with entries in oF/p

m
F ,

via reduction modulo pmF and multiplication from the right. Then Kn(m) is exactly the
stabilizer of (0, . . . , 0, 1). We show that a vector v = (vn−1, . . . , v0) ∈ M1×n(oF/p

m
F ) lies in

the orbit of (0, . . . , 0, 1) if and only if there is a 0 ⩽ j ⩽ n − 1 such that vj ∈ (oF/p
m
F )

×. It
is clear that if all the vi are elements of pF /p

m
F there can be no element in Kn that maps

(0, . . . , 0, 1) to v.
Suppose that v0 ∈ (oF/p

m
F )

×, then (
1n−1 0

ṽn−1···ṽ1 ṽ0

)
is an element of Kn that maps (0, . . . , 0, 1) to v.

If v0 ∈ pF /p
m
F let j be the smallest positive integer such that vj ∈ (oF/p

m
F )

×, then(
1n−j−1

0 1
1j−1

ṽn−1···ṽj+1 ṽj ṽj−1···ṽ1 ṽ0

)
is an element of Kn that maps (0, . . . , 0, 1) to v. By taking inverses we obtain the result. □

Note that by the Cartan decomposition the set

Bn =




ϖ
αn−1
F

ϖ
αn−2
F

. . .
ϖ
α1
F

1

 | αi ∈ Z, 0 ⩽ α1 ⩽ α2 ⩽ . . . ⩽ αn−1


is a set of double coset representatives for KnZn\Gn/Kn. This together with Lemma 4.3
gives us an exhaustive list of representatives for KnZn\Gn/Kn(m). We will need to following
slight refinement.
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Proposition 4.4. The union of

Cn =




ϖ
αn−1
F

ϖ
αn−2
F

...
ϖ
α1
F

ṽn−1 ṽn−2 ... ṽ1 1

 |
0 ⩽ α1 ⩽ α2 ⩽ . . . ⩽ αn−1

vi ∈ Mn(oF/p
m
F )

valF(ṽi) < αi


and A2

n ·Bn is an exhaustive collection of coset representatives for KnZn\Gn/Kn(m).

Proof. As already mentioned by the above and Lemma 4.3 we know that A1
n · Bn ∪ A2

n · Bn

yields an exhaustive collection of coset representatives for KnZn\Gn/Kn(m). Let X be any
element in A1

n ·Bn. Then
X =

(
A 0
ṽ x̃

)
where A = diag(ϖ

αn−1

F , . . . , ϖα1
F ), x̃ ∈ o×F and ṽ = (ṽn−1, . . . , ṽ1) ∈ M1×(n−1)(oF). Suppose

there is 1 ⩽ j ⩽ n− 1 such that valF(ṽj) ⩾ αj . Then the matrix 1n−j−1

1
1j−1

−ṽjϖ
−αj
F 1


lies in Kn and  1n−j−1

1
1j−1

−ṽjϖ
−αj
F 1

X =
(

A 0
ṽn−1...ṽj+1 0 ṽj−1...ṽ1 x̃

)
generates the same double coset as X. Hence we can assume that valF(ṽi) < αi for all
1 ⩽ i ⩽ n−1. Moreover, by multiplying X by the left by the matrix diag(1, . . . , 1, x̃−1) ∈ Kn

we see that (
A 0

x̃−1ṽ 1

)
lies in the same double coset as X, which implies the result. □

4.3. Proof of Theorem 4.1. We now consider the Hom-space Hom
R[Kn∩gKn(m)]

(1, τ) over

various cases of our chosen coset representatives for KnZn\Gn/Kn(m). Essentially, the cus-
pidality of τ will force most of these spaces to be zero.

Proposition 4.5. For any n ⩾ 2 and m ⩾ 1 if g ∈ A2
n ·Bn, then Hom

R[Kn∩gKn(m)]
(1, τ) = 0.

Proof. Let g ∈ A2
n ·Bn, which then has the form

g =

(
A

ϖ
αj
F w1 ϖ

αj
F w2 ϖ

αj
F w3 ϖ

αj
F x

B
1

)
,

where w1 ∈ M1×(n−j−1)(oF), w2 ∈ pF , w3 ∈ M1×(j−1)(pF ), x ∈ o×F , A = diag(ϖ
αn−1

F , . . . , ϖ
αj+1

F ),

andB = diag(ϖ
αj−1

F , . . . , ϖα1
F ), for integers 0 ⩽ α1 ⩽ . . . ⩽ αn−1. For a ∈ M1×(n−j−1)(oF), b ∈

M1×(j−1)(oF), c ∈ oF, let

X(a, b, c) =

( 1n−j−1

aA+ϖ
αj
F cw1 1 bB+ϖ

αj
F cw3 xϖ

αj
F c

1j−1

1

)
which is an element of Kn(m). Note that

g−1 =

(
A−1

1
B−1

−x−1w1A−1 ϖ
−αj
F x−1 −x−1w3B−1 −x−1w2

)



12 JOHANNES GIRSCH AND ROBERT KURINCZUK

and we can compute

gX(a, b, c)g−1 =

 1n−j−1

ϖ
αj
F w2a 1+w2cϖ

αj
F ϖ

αj
F w2b −ϖ

2αj
F cw2

2
1j−1

a c b 1−ϖ
αj
F cw2

 .

This matrix is in Kn and since by assumption w2 ∈ pF we obtain

gX(a, b, c)g−1 =

(
1n−j−1

1
1j−1

a c b 1

)
.

Since a ∈ M1×(n−j−1)(oF), b ∈ M1×(j−1)(oF), c ∈ oF were arbitrary we see that gKn(m) ∩Kn

contains Nn−1,1(kF). Hence

HomgKn(m)∩Kn(1, τ) ⊆ HomNn−1,1(kF)(1, τ),

however by the cuspidality of τ the latter space is zero. □

Proposition 4.6. Suppose g ∈ Cn is not a diagonal matrix. Then Hom
R[Kn∩gKn(m)]

(1, τ) =

0.

Proof. Note that any such g has the form

g =

(
A

ϖ
αj
F

B
v x 0 1

)
,

where 1 ⩽ j ⩽ n−1, A = diag(ϖ
αn−1

F , . . . , ϖ
αj+1

F ), B = diag(ϖ
αj−1

F , . . . , ϖα1
F ), v ∈ M1×(n−j−1)(oF)

and x ̸= 0. Let K′
n,j be the subgroup of Kn(m), defined by,

K′
n,j =

{(
X
Y 1j−1

0 0 1

)
| X ∈ GLn−j(oF), Y ∈ M(j−1)×(n−j)(oF)

}
.

We claim that gK′
n,j ∩K contains the unipotent radical Nn−j,j(kF). We will show this

inductively. As a base case consider, for any r ⩾ 2, a matrix h ∈ Cr of the form

h =

(
A

ϖ
αj
F

B
0 x 0 1

)
where 1 ⩽ j ⩽ r−1, A = diag(ϖ

αr−1

F , . . . , ϖ
αj+1

F ), B = diag(ϖ
αj−1

F , . . . , ϖα1
F ) and x ̸= 0. Note

that we have valF(x) < αj and since x ̸= 0 that αj > 0. For any a ∈ M1×(r−j−1)(oF), b ∈
oF, c ∈ M(j−1)×(r−j−1)(oF), and d ∈ M1×(j−1)(oF) let

X(a, b, c, d) =

 1r−j−1

x−1aA 1+ϖ
αj
F x−1b

B−1cA B−1dϖ
αj
F 1j−1

1

 .

Since αi > valF(x) for all i ⩾ j we have that x−1aA ∈ M(r−j−1)×(r−j−1)(oF). Moreover, the
αi are non-decreasing which implies that X(a, b, c, d) is an element of K′

r,j . We can compute

hX(a, b, c, d)h−1 =

 1r−j−1

ϖ
αj
F x−1a 1+ϖ

αj
F x−1b

c d 1j−1

a b 0 1

 ,
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which yields an element of Kn. Clearly, we have

hX(a, b, c, d)h−1 =

( 1r−j−1

0 1
c d 1j−1

a b 0 1

)
,

which finishes the base case.
Let

h1 =
(
B
C

v 1

)
∈ Cr1 ,

where B = diag(ϖ
αr1−1

F , . . . , ϖ
αj
F ), C = diag(ϖ

αj−1

F , . . . , ϖα1
F ) and v ∈ M1×(r1−j)(oF). We

assume that h1K′
r1,j

h−1
1 ∩K contains Nr1−j,j(kF).

Assume now that

h2 =

A
0 ϖ

αr1
F

h1
0 x

 ∈ Cr2

where A = diag(ϖ
αr2−1

F , . . . , ϖ
αr1+1

F ) and x ̸= 0. Then for any

T =
(
X
Y 1
0 0 1

)
∈ K ′

r1,j

we have that

h2

(
1r2−r1

T

)
h−1
2 =

(
1r2−r1

h1Th
−1
1

)
.

By our assumption this implies that h2K ′
r2,j

h−1
2 ∩K contains(

1r2−r1
1r1−j

∗ 1j

)
.

Now let

Y (a, b, c, d) =


1r2−r1−1

x−1aA 1+ϖ
αr1
F x−1b

1r1−j

C−1cA C−1dϖ
αr1
F 1j−1

1


where a ∈ M1×(r2−r1−1)(oF), b ∈ oF, c ∈ M(j−1)×(r2−r1−1)(oF) and d ∈ M(j−1)×1(oF). By our
assumptions on x and the αi, it is easy to see that Y (a, b, c, d) ∈ K′

r2,j
. We can compute

h2Y (a, b, c, d)h−1
2 =


1r2−r1−1

ϖαrF x−1a 1+ϖαrF x−1b
1r1−j

c d 1j−1

a b 1


and since valF(x) < αr we have

h2Y (a, b, c, d)h−1
2 =


1r2−r1−1

1
1r1−j

c d 1j−1

a b 1

 .

Hence we obtain that h2K′
r2,j

∩Kn contains Nr2−j,j(kF). Hence

Hom
R[Kn∩gKn(m)]

(1, τ) ⊆ HomR[Nr2−j,j(kF)]
(1, τ),

however by the cuspidality of τ the latter space is zero. □

By the above two propositions the only elements g of Cn or A2
n · Bn for which the space

Hom
R[Kn∩gKn(m)]

(1, τ) = 0 can be nonzero are diagonal matrices in Cn, i.e., elements of Bn.
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Proposition 4.7. Suppose that g = diag(ϖ
αn−1

F , . . . , ϖα1
F , 1) is an element of Bn where

αn−1 ⩾ m, then Hom
R[Kn∩gKn(m)]

(1, τ) = 0.

Proof. Let g′ = diag(ϖ
αn−2

F , . . . , ϖα1
F ). Note that by our assumptions for any v ∈ M(n−2)×1(oF)

and x ∈ oF the matrix  1
g′−1vϖ

αn−1

F 1n−2

ϖ
αn−1

F x 1


is an element of Kn(m). We can compute

g

(
1

g′−1vϖ
αn−1
F 1n−2

ϖ
αn−1
F x 1

)
g−1 =

(
1
v 1n−2

x 1

)
,

and obtain that Kn ∩ gKn(m) contains N1,n−1(kF) which yields the result. □

Proposition 4.8. Let g = diag(ϖ
αn−1

F , . . . , ϖα1
F , 1) ∈ Bn where αn−1 < m.

(1) Suppose the αi are not strictly increasing, i.e. there is 1 ⩽ j ⩽ n − 1 such that
αj−1 = αj, then Hom

gKn(m)g−1∩K(1, τ) is zero.

(2) If for 1 ≤ i ≤ n − 2 we have that αi < αi+1 then Hom
gKn(m)g−1∩K(1, τ) is one-

dimensional.

Proof. Note that for any matrix X = (Xi,j) ∈ Kn(m) we have (gXg−1)i,j = ϖ
αn−i−αn−j
F Xi,j .

This implies that gKn(m)g−1 ∩K is contained in Pn, i.e. the mirabolic subgroup. Since τ
has a Kirillov model we see that

Hom
gKn(m)g−1∩K(1, τ) = Hom

gKn(m)g−1∩K(1, ind
Pn
Un

(ψn)).

Moreover, gKn(m)g−1 ∩K contains (
Bop
n−1(kF)

1

)
where Bop

n−1(kF) are all invertible lower triangular matrices in GLn−1(kF).

Let Ψ be an element of Hom
gKn(m)g−1∩K(1, ind

Pn
Un

(ψn)) and set f = Ψ(1). Then for any u ∈
Un, g ∈ Pn, b ∈ Bop

n−1(kF) we have that f(ugb) = ψn(u)f(gb) = ψn(u)(b · f)(g) = ψn(u)f(g).

Note that the Bruhat decomposition Pn =
⋃
w∈W UnwB

op
n−1(kF) implies that f is uniquely

determined by its values on the Weyl group W. We realize W as the set of permutation
matrices. For any permutation matrix wσ, where σ ∈ Sn and any matrix A = (ai,j)1⩽i,j⩽n
we have that (wσAw

−1
σ )i,j = aσ(i),σ(j). Now if σ−1(i) < σ−1(i + 1) for all 1 ⩽ i ⩽ n − 1,

then σ = id. Hence if wσ ̸= 1, there is an element b ∈ Bop
n−1(kF) such that wbw−1 ∈ Un

and ψn(wbw
−1) ̸= 1. Then f(wσ) = f(wσb) = ψn(wσbw

−1
σ )f(wσ) and hence f(wσ) = 0 for

wσ ̸= 1. Hence the support of f is contained in UnB
op
n−1.

ad (1): Since we assume that there is 1 ⩽ j ⩽ n − 1 such that αj−1 = αj , we see that

gKn(m)g−1 ∩K contains the subgroup

1n + kFEj−1,j ,

where Ej−1,j is the matrix whose only nonzero entry is one at (j − 1, j). This implies that

there exists u ∈ gKn(m)g−1 ∩K ∩Un such that ψn(u) ̸= 1. We obtain

f(1) = (u · f)(1) = f(u) = ψn(u)f(1)

and hence f(1) = 0, which implies that f ≡ 0 and Ψ = 0.
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ad (2): In this case gKn(m)g−1 ∩K = Bop
n−1. Now the space of Bop

n−1-invariant functions

in IndPnUn(ψ) which are supported in UnB
op
n−1 is clearly one-dimensional. Moreover, any such

function gives rise to a unique morphism in

HomBop
n−1

(1, indPnUn(ψn))

which implies the result. □

By putting all the above propositions together we obtain that Hom
gKn(m)g−1∩K(1, τ) can

only by nonzero for g in the same double coset as any of

Dn(m) :=




ϖαn−1

ϖαn−2

. . .

ϖα1

1

 | αi ∈ Z, 0 < α1 < α2 < . . . < αn−1 < m


.

Proof of Theorem 4.1. By the above Proposition 4.8 for any element g of Dn(m) the Hom-
space

Hom
gKn(m)g−1∩K(1, τ)

is one dimensional and we choose a nonzero ϕg in this space. By the computations in Section
4.1 any such ϕg gives rise to an element Φg of HomR[Kn(m)](1, π) and the collection {Φg | g ∈
Dn(m)} is linearly independent. Hence we obtain

dimR(HomR[Kn(m)](1, π)) = |Dn(m)|.

If m < n then Dn(m) is empty and if m = n there is exactly one element, and if m >

n, |Dn(m)| =
(
m− 1
n− 1

)
.

The explicit form of fnew(Σn) follows as
∑

b∈Bop
n−1(kF)

b ·Bτ,ψ is clearly Bop
n−1(kF)-invariant,

and it is nonzero as ∑
b∈Bop

n−1(kF)

b ·Bτ,ψ(1) =
∑

b∈Bop
n−1(kF)

Bτ,ψ(b) = Bτ,ψ(1) = 1

by property (B1) of Bessel functions.
It remains to show the final formula of (3). As the integral expression is clearly Kn(n)-

invariant, we just need to show it is non-zero, which we do by evaluating at g = Σn and
evaluating the resulting function at the identity: we consider∫

Kn(n)
Bτ̃ (ΣnkΣ

−1
n )dk(1) =

∫
Kn(n)∩KΣn

n

Bτ̃ ,ψ(ΣnkΣ
−1
n )dk.

As k ∈ Kn(n), we can write

k =

(
A x
y z

)
=

(
1n−1 0
yA−1 z − yA−1x

)(
A x
0 1

)
,

with A ∈ GLn−1(oF), x ∈
(
oF · · · oF

)T
, y ∈

(
pnF · · · pnF

)
, and z ∈ 1 + pnF. Moreoever,

Σn

(
1n−1 0
yA−1 z − yA−1x

)
Σ−1
n ∈ 1n +Mn(pF) ⊂ Kn,
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Hence, for k ∈ Kn(n) decomposed as above,

ΣnkΣ
−1
n ∈ Kn ⇔ Σn

(
A x
0 1

)
Σ−1
n ∈ Kn

and

Bτ̃ ,ψ(ΣnkΣ
−1
n ) = Bτ̃ ,ψ

(
Σn

(
A x
0 1

)
Σ−1
n

)
.

Moreover, if Σn
(
A x
0 1

)
Σ−1
n ∈ Kn then it is lower unitriangular mod Mn(pF) with image

inside
(

Bop
n−1 0

0 1

)
and containing the identity. By property (B1) of Bessel functions, we deduce

that the integral is a non-zero constant. □

5. Matrix coefficients and Whittaker functions of depth zero newform
vectors

5.1. Matrix coefficients of depth zero newform vectors. Suppose now π is a depth
zero cuspidal R-representation. Choose now a Moy–Prasad–Morris–Vignéras model for π as
compactly induced

indGZK(ωπτ),

where τ is a cuspidal representation of GLn(kF) which we identify withW (τ, ψ) its Whittaker
model, then in Theorem 4.1 we showed that vnew is given by the function (up to scalar) fnew.
For π∨ similarly, we take the model

indGZK(ω
−1
π τ∨),

where we identify τ∨ with its Whittaker model W (τ∨, ψ
−1

) and f∨new is again given by The-
orem 4.1.

Let dg be a right G-invariant measure on ZK\G, normalized so that dg(ZK) = 1, then we
can identify indGZK(ω

−1
π τ∨) with (indGZK(ωπτ))

∨ via the bilinear form

indGZK(ωπτ)× indGZK(ω
−1
π τ∨) → R

(f, f ′) 7→
∫
ZK\G

⟨f(g), f ′(g)⟩dg.

We identify (W (τ, ψ))∨ ≃W (τ∨, ψ
−1

) via the bilinear form

W (τ, ψ)×W (τ∨, ψ
−1

) → R

(W,W ′) 7→
∑

U(Fq)\G(Fq)

W (k)W ′(k).

For y ∈ Kn(n), define fΣy ∈ indGZK(ωπτ) by support fΣy ⊆ ZKΣy and

fΣy |ZKΣy= fnew |ZKΣy

and analogously f∨Σy ∈ indGZK(ω
−1
π τ∨) by support f∨Σy ⊆ ZKΣy and

f∨Σy |ZKΣy= f∨new |ZKΣy .

Let y1, . . . , yr be elements ofK(n) such that Σy1, . . . ,Σyr are representatives for KZ\KZΣK(n).
Then

fnew =

r∑
i=1

fΣyi , and f
∨
new =

r∑
i=1

f∨Σyi .

Note that by right Kn(n)-invariance of f∨new, we have fΣ(x) = fΣy(xy), for y ∈ Kn(n).
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Remark 5.1. A priori we have so far obtained two expressions for the newform in indGnZnKn
(τ̃).

Firstly, fnew =
∑r

i=1 fΣyi and furthermore

fnew(g) =

∫
Kn(n)

Bτ̃ (gkΣ
−1)dk.

We will show that one can obtain the first expression by simply evaluating the above integral.
As above let Σy1, . . . ,Σyr ∈ K(n) be a set of coset representatives for KZ\KZΣK(n),

which implies that y1, . . . , yr ∈ K(n) is a set of coset representatives for K(n)∩KΣ\K(n). In
particular we obtain that∫

Kn(n)
Bτ̃ (gkΣ

−1
n )dk =

r∑
i=1

∫
Kn(n)∩KΣ

Bτ̃ (gy
−1
i kΣ−1)dk =

r∑
i=1

∫
Kn(n)Σ

−1∩K
Bτ̃ (g(Σyi)

−1k)dk

and we claim that
∫
Kn(n)Σ

−1∩K Bτ̃ (g(Σyi)
−1k)dk = fΣyi(g) for all g ∈ Gn. Since supp(Bτ̃ ) ⊆

ZK we obtain that if ∫
Kn(n)Σ

−1∩K
Bτ̃ (g(Σyi)

−1k)dk ̸= 0

then g ∈ KZΣyi. Suppose that g ∈ KZΣyi and write g = zk′Σyi where k
′ ∈ K and z ∈ Z. We

obtain ∫
Kn(n)Σ

−1∩K
Bτ̃ (g(Σyi)

−1k)dk = ω(z)

∫
Kn(n)Σ

−1∩K
Bτ̃ (k

′k)dk.

If x ∈ Kn(n)
Σ−1 ∩ K1 we have that Bτ̃ (k

′kx) = Bτ̃ (k
′k) for all k ∈ Kn(n)

Σ−1 ∩ K and it is

straightforward to see that Kn(n)
Σ−1 ∩K/Kn(n)

Σ−1 ∩K1 ∼= Bop
n−1(kF). Hence we obtain that

(we assume the measure of Kn(n)
Σ−1 ∩K1 to be 1)

ω(z)

∫
Kn(n)Σ

−1∩K
Bτ̃ (k

′k)dk = ω(z)
∑

x∈Bop
n−1(kF)

k′x ·Bτ,ψ,

which agrees with fΣyi(g).

The matrix coefficient cBτ̃ ,Bτ̃∨ , has a simple description: supp(cBτ̃ ,Bτ̃∨ ) ⊆ ZnKn and,
for k ∈ Kn, z ∈ Zn, expanding the definitions we have

cBτ̃ ,Bτ̃∨ (zk) = ωπ(z)Bτ,ψ(k).

This is a special case of the Bessel functions of [PS08, Proposition 5.7].
We now give a formula for the canonical bi-K(n)-invariant matrix coefficient:

Proposition 5.2. Let y1, . . . , yr be a set of coset representatives of KZ\KZΣK(n). The
matrix coefficient cfnew,f∨new is non-zero and satisfies:

(1) (Bi-K(c(π))-invariance), i.e., cfnew,f∨new ∈ (indGZ (ωπ))
K(c(π))×K(c(π));

(2) supp(cfnew,f∨new) ⊆ ZK(n)KΣK(n) and for g ∈ KΣ let

Ig = {(i, j) ∈ Z2 | 1 ⩽ i, j ⩽ r and g ∈ y−1
j Z(KΣ)yi},

then we have

cfnew,f∨new(g) =
∑

(i,j)∈Ig

|G(Fq)|
|U(Fq)|dim(τ)

∑
b,b′∈Bop

n−1(Fq)

Bτ,ψ(bΣyjgy
−1
i Σ−1b′).
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(3) (expression in terms of cBτ̃ ,Bτ̃∨ ) for g ∈ G,

cfnew,f∨new(g) =

∫
Kn(n)

∫
Kn(n)

cBτ̃ ,Bτ̃∨ (k
′ΣngkΣ

−1
n )dk′dk.

Proof. The final part follows directly from Theorem 4.1 (3). Let x, y ∈ K(n). By our
identification,

cfΣx,f∨Σy(j) =

∫
ZK\G

⟨fΣx(gj), f∨Σy(g)⟩dg.

However, f∨Σy is supported in KZΣy and note that for all g ∈ KZΣy we have

⟨fΣx(gj), f∨Σy(g)⟩ = ⟨fΣx(Σyj), f∨Σy(Σy)⟩.

Hence

cfΣx,f∨Σy(j) = µKZ\G(KZΣy)⟨fΣx(Σyj), f∨Σy(Σy)⟩.

Now for fΣx(Σyj) to be nonzero we need to have that j ∈ y−1Z(KΣ)x and hence

(1) supp(cfΣx,f∨Σy) ⊆ y−1Z(KΣ)x.

Let j ∈ y−1KΣx and write j′ = Σyjx−1Σ−1. By the second identification we have

⟨fΣx(Σyj), f∨Σy(Σy)⟩ =
∑

k∈U(Fq)\G(Fq)

∑
b,b′∈Bop

n−1(Fq)

Bτ,ψ(kj
′b)B

τ∨,ψ
−1(kb′)

= |U(Fq)|−1
∑

b,b′∈Bop
n−1(Fq)

 ∑
k∈G(Fq)

Bτ,ψ(kb
′j′b)B

τ∨,ψ
−1(k)

 .

By the formula for the Bessel function: Bτ,ψ(a) = |U(Fq)|−1
∑

u∈U(Fq) ψ
−1(u)χτ (au) of (B2)

and orthogonality of characters we see that

⟨fΣx(Σyj), f∨Σy(Σy)⟩ = |U(Fq)|−3
∑

b,b′∈Bop
n−1(Fq)

 ∑
k∈G(Fq)

∑
u,u′∈U(Fq)

ψ−1(u)χτ (kb
′j′bu)ψ(u′)χτ∨(ku

′)


= |U(Fq)|−3

∑
b,b′∈Bop

n−1(Fq)

∑
u,u′∈U(Fq)

ψ(u−1u′)

 ∑
k∈G(Fq)

χτ (ku
′−1b′j′bu)χτ∨(k)


=

|G(Fq)|
|U(Fq)|3 dim(τ)

∑
b,b′∈Bop

n−1(Fq)

∑
u,u′∈U(Fq)

ψ(u−1u′)χτ (u
′−1b′j′bu).
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Hence we can compute

⟨fΣx(Σyj), f∨Σy(Σy)⟩ =
|G(Fq)|

|U(Fq)|3 dim(τ)

∑
b,b′∈Bop

n−1(Fq)

∑
u,u′∈U(Fq)

ψ(u′−1u−1u′)χτ (u
′−1b′j′buu′)

=
|G(Fq)|

|U(Fq)|2 dim(τ)

∑
b,b′∈Bop

n−1(Fq)

∑
u∈U(Fq)

ψ(u−1)χτ (b
′j′bu)

=
|G(Fq)|

|U(Fq)| dim(τ)

∑
b,b′∈Bop

n−1(Fq)

Bτ,ψ(b
′j′b).

=
|G(Fq)|

|U(Fq)| dim(τ)

∑
b,b′∈Bop

n−1(Fq)

Bτ,ψ(b
′Σyjx−1Σ−1b).

Let y1, . . . , yr ∈ K(n) be a set of coset representatives for KZ\KZΣK(n) and choose y1 to be
the identity. As fnew =

∑r
i=1 fΣyi , we see that

cfnew,f∨Σ (x) =
r∑
i=1

cfΣyi ,f
∨
Σ
(x)

and hence supp(cfnew,f∨Σ ) ⊆ Z(KΣ)K(n). For g ∈ KΣ note that cfΣyi ,f
∨
Σ
(g) is nonzero if and

only if yi is the identity, i.e. i = 1. We obtain that

cfnew,f∨Σ (g) =
|G(Fq)|

|U(Fq)|dim(τ)

∑
b,b′∈Bop

n−1(Fq)

Bτ,ψ(bΣgΣ
−1b′).

Moreover, we have that

cfnew,f∨new(g) =
r∑

i,j=1

cfΣyi ,f
∨
Σyj

(g)

and hence supp(cfnew,f∨new) ⊆ ZK(n)(KΣ)K(n). For g ∈ KΣ let

Ig = {(i, j) ∈ Z2 | 1 ≤ i, j ≤ r and g ∈ y−1
j Z(KΣ)yi}

and then

cfnew,f∨new(g) =
∑

(i,j)∈Ig

|G(Fq)|
|U(Fq)| dim(τ)

∑
b,b′∈Bop

n−1(Fq)

Bτ,ψ(bΣyjgy
−1
i Σ−1b′).

□

While the first formula for the canonical bi-K(n)-invariant matrix coefficient is only explicit
up to the sets Ig, our proof allows us to give an explicit formula for the K(n)-invariant matrix
coefficient cfnew,f∨Σ :

Corollary 5.3. The matrix coefficient cfnew,f∨Σ satisfies:

(1) (Right K(c(π))-invariance), i.e., cfnew,f∨Σ ∈ (indGZ (ωπ))
K(c(π));

(2) supp(cfnew,f∨Σ ) ⊆ ZKΣK(n) and for g ∈ KΣ.

cfnew,f∨Σ (j) =
|G(Fq)|

|U(Fq)|dim(τ)

∑
b,b′∈Bop

n−1(Fq)

Bτ,ψ(bΣgΣ
−1b′).
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In particular, cfnew,f∨Σ (1) =
|G(Fq)|

|U(Fq)|dim(τ) .

5.2. Whittaker newforms of depth zero cuspidal representations. Given ψ : F → R×

a non-trivial character, we define a non-degenerate character ψ : Un → R× in the usual way:

ψ(u) = ψ(

n−1∑
i=1

ui,i+1).

Using finite Bessel functions, Gelfand constructs an explicit Whittaker function for a depth
zero cuspidal representation with small support:

Proposition 5.4 (Gelfand). Let π be a depth zero cuspidal R-representation of Gn containing
cuspidal type (K, τ), and suppose ψ : F → R× has conductor pF. Then there is a unique
Whittaker function Wπ,Gel,ψ ∈ W(π, ψ) defined by:

supp(Wπ,Gel,ψ) ⊆ ZnUnKn

Wπ,Gel,ψ(zuk) = ωπ(z)ψ(u)Bτ,ψ(k).

Suppose that ψ′ has conductor pF . Note that the associated non-degenerate character

of Un defined by ψ′Σ−1
n is given by a character ψ of conductor oF . Hence for f ∈ W(π, ψ′) the

map f̃(g) := f(Σng) is an element of IndGnUn
(ψ). Since f 7→ f̃ is Gn-equivariant we see that

f̃ ∈ W(π, ψ). Hence g 7→ Wπ,Gel,ψ′(Σng) is an element ofW (π, ψ) and also for any k′ ∈ Kn(n)
the function g 7→ (k′Σ−1

n ) ·Wπ,Gel,ψ′(Σng). This shows that the function

g 7→
∫
Kn(n)

W
π,Gel,ψΣ−1

n
(ΣngkΣ

−1
n )dk

is also an element of W(π, ψ).
In the next proposition, we give a strong bound on the support of the Whittaker newform

of a depth zero cuspidal R-representation, and two integral expressions for it – one given
by a Jacquet integral of the newform matrix coefficient, and the second by integrating the
translated-conjugate average of the Gelfand’s Whittaker function over Kn(n) defined above:

Proposition 5.5. Let π be a depth zero cuspidal R-representation of Gn, and suppose ψ :
F → C× has conductor oF. The Whittaker newform Wπ,new,ψ ∈ W(π, ψ) (normalized at the
identity) satisfies the following support condition

supp(Wπ,new,ψ) ⊆ ZnUnK
Σn
n Kn(n),

and for g ∈ G is given by

Wπ,new,ψ(g) =

∫
Un

ψ−1(u)cfnew,f∨new(ug)du,

where du is the R-Haar measure on Un normalized by du(U∩(K)Σ) = 1. Moreover, for g ∈ G,

Wπ,new,ψ(g) =

∫
Kn(n)

W
π,Gel,ψΣ−1

n
(ΣngkΣ

−1
n )dk

for an appropriately normalized R-Haar measure dk on Kn(n).

Proof. The support condition will follow once we have established either integral expression
– directly from the support of our matrix coefficient or of Gelfand’s Whittaker function. For
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the first expression note that the map

Ξ: π → IndGnUn
(ψn)

v 7→
(
g 7→

∫
Un

ψ−1(u)cv,f∨new(ug)du

)
,

is clearly an intertwining map. Since π is irreducible and Ξ(fnew) is K(n)-invariant the
formula follows if we can show that Ξ is nonzero. In particular it is enough to show that∫

Un

ψ−1(u)cfΣ,f∨new(u)du ̸= 0.

We write c for the matrix coefficient cfΣ,f∨new . By Equation (1) we see that supp(c) ⊆
K(n)Z(KΣ) and hence the integral is actually over Un ∩K(n)Z(KΣ). We have that

Un ∩K(n)Z(KΣ) = Un ∩KΣ

which in particular implies that∫
Un

ψ−1(u)c(u)du =

∫
Un

ψ−1(u)cfΣ,f∨Σ (u)du.

Note that by our choices ψ−1(u′u)c(u′u) = ψ−1(u)c(u) for all u ∈ U ∩ KΣ, u′ ∈ U ∩ (K1)Σ.
Hence we need to compute ∑

u∈U∩(K1)Σ\U∩KΣ

ψ−1(u)c(u).

However, note that U ∩ (K1)Σ\U ∩KΣ ∼= Un(kF), and we find∑
u∈U∩(K1)Σ\U∩KΣ

ψ−1(u)c(u) =
∑

u∈Un(kF)

ψ
−1

(u)
∑

b,b′∈Bop
n−1(kF)

Bτ,ψ(bub
′).

To compute this, we will use the following lemma:

Lemma 5.6. Let α : GLr(kF) → C be a function such that α(ug) = ψ(u)α(g) for all u ∈
Ur(kF), g ∈ GLr(kF). Then for all g ∈ GLr(kF) we have that

1

|Ur(kF)|
∑

u∈Ur(kF),b∈Bop
r−1(kF)

ψ
−1

(u)α(bug) = α(g).

Proof. We proceed via induction on r. For x ∈ kr−1
F let n(x) be the matrix in Ur(kF) defined

by

n(x) =

(
1r−1 x
0 1

)
.

Let Nr(kF) be the abelian subgroup of Ur(kF) consisting of matrices of the form n(x) where
x ∈ kr−1

F . Note that Ur(kF) = Ur−1(kF)⋉Nr(kF), and hence we have∑
u∈Ur(kF),b∈Bop

r−1(kF)

α(bug) =
∑

u∈Ur−1(kF)

ψ
−1

(u)
∑

b∈Bop
r−1(kF),x∈Nr(kF)

ψ
−1

(x)α(bxug).

Now bxb−1 ∈ Nr(kF) and hence∑
x∈Nr(kF)

ψ
−1

(x)α(bxug) =
∑

x∈Nr(kF)

ψ(x−1bxb−1)α(bug).
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Let x = n(x′) for some x′ ∈ kr−1
F . Then x−1bxb−1 = n((b− Ir−1)x

′). Now if the bottom row

of b is not equal to (0, . . . , 0, 1) then
∑

x∈Nr(kF) ψ(x
−1bxb−1) = 0. If b has bottom row equal

to (0, . . . , 0, 1), i.e. b ∈ Bop
r−2(kF), then ψ(x

−1bxb−1) = 1. Hence∑
b∈Bop

r−1(kF),x∈Nr(kF)

ψ
−1

(x)α(bxug) = |Nr(kF)|
∑

b∈Bop
r−2(kF)

α(bug).

Since |Ur(kF)| = |Ur−1(kF)| · |Nr(kF)|, this implies that

1

|Ur(kF)|
∑

u∈Ur(kF),b∈Bop
r−1(kF)

ψ
−1

(u)α(bug) =
1

|Ur−1(kF)|
∑

u∈Ur−1(kF),b∈Bop
r−2(kF)

ψ
−1

(u)α(bug)

and we obtain the result via induction. □

Hence, we see that∑
u∈U(kF)

ψ
−1

(u)
∑

b,b′∈Bop
n−1(kF)

Bτ,ψ(bub
′) = |Un(kF)|

∑
b′∈Bop

n−1(kF)

Bτ,ψ(b
′) = |Un(kF)|,

which establishes our first integral expression. Our second integral expression follows from
Theorem 4.1 (3). □

6. Newform vectors in minimax cuspidal representations

6.1. Parahoric subgroups and their filtrations. Let V be an F-vector space of dimen-
sion n, G = GLF(V), and A = EndF(V). Fix a character ψ : F → R× of conductor pF (i.e.,
trivial on pF, but not on oF).

An oF-lattice in V is a compact open oF-submodule of V. Given any oF-lattice L there
exists a basis {e1, . . . , en} of V such that L = oFe1 ⊕ · · · ⊕ oFen. Let Latt(V) denote the set
of oF-lattices in V. A function Λ : Z → Latt(V) is called a lattice chain if

(1) it is strictly decreasing : Λ(i) ⊂ Λ(i− 1) for all i ∈ Z;
(2) periodic: there exists e(Λ) ∈ N such that Λ(i+ e(Λ)) = pFΛ(i) for all i ∈ Z.

Given a lattice chain in V, there exists a basis {v1, . . . vn} of V such that for 0 ⩽ i ⩽ e(Λ)− 1
we have

Λ(i) = oFv1 ⊕ · · · ⊕ oFvri ⊕ pFvri+1 ⊕ · · · ⊕ pFvn;

we call such a basis standard. We say that a lattice chain Λ is principal if dimkF(Λ(i)/Λ(i+1))
is independent of i.

Given a lattice chain Λ, the submodule of A defined by

A0(Λ) =

e(Λ)−1⋂
i=0

EndoF(Λ(i)),

is a hereditary oF-order in A, and all hereditary oF-orders in A arise in this way. With
respect to a standard basis for Λ, A0(Λ) is contained in Mn(oF) and block-upper-triangular
modulo pF. If Λ is principal then the blocks are of the same size equal to n/e(Λ).

The hereditary order A0(Λ) has a decreasing filtration

Ar(Λ) = {x ∈ A : xΛ(i) ⊆ Λ(i+ k) for all i ∈ Z},

by oF-submodules, and P = P(Λ) = A1(Λ) is the Jacobson radical of A0(Λ). We set

U0(Λ) = A0(Λ)
×, Ur(Λ) = 1 + Ar(Λ),
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then U0(Λ) is a parahoric subgroup of G, with associated filtration Ur(Λ). The commutator
subgroup [Ur(Λ),Us(Λ)] ⊆ Ur+s(Λ) and we have the following crucial isomorphism:

Lemma 6.1. For integers 0 ⩽ r ⩽ s ⩽ 2r + 1, we have an isomorphism

P−s/P−r → Hom(Ur+1(Λ)/Us+1(Λ),R×)

b+P−r 7→ [ψb : x 7→ ψ(TrA/F(b(x− 1)))].

6.2. Strata in cuspidal representations. A stratum in A is a 4-tuple [Λ, r, s, β] where

(1) Λ is an oF-lattice chain;
(2) s < r are integers;
(3) β ∈ P−r(Λ).

A stratum [Λ,m,m− 1, β] in A is called fundamental if β+P−m+1(Λ) contains no nilpotent
elements.

Let π be an irreducible representation of G which is not of depth zero. Then there exists
a fundamental stratum [Λ,m,m− 1, β] with r ⩾ 1 such that

(†) HomUm(Λ)(ψβ, π) ̸= 0.

Following Bushnell and Kutzko, we say that π contains the stratum [Λ,m,m− 1, β]. The ra-
tional number m/e(Λ) is an invariant of π (i.e., does not depend on the choice of fundamental
stratum), which we call the depth of π, and we write d(π) = m/e(Λ).

For a cuspidal representation of G (of positive depth), Bushnell and Kutzko show that
we can choose a particularly nice fundamental stratum – where, for example, amongst its
additional properties β generates a field in A – satisfying (†).

A minimal stratum in A is a fundamental stratum [Λ,m,m− 1, β] satisfying:

(1) Λ is an oE-lattice chain;
(2) the F-algebra E = F[β] is a field in A;
(3) the element β is minimal over F, meaning:

(a) gcd(m, e(E/F)) = 1;

(b) ϖmβe(E/F) + pE generates the extension of residue fields kE/kF.

Note that, e(Λ) = e(E/F).
A minimax stratum [Λ,m,m − 1, β] in A is a minimal stratum which is also maximal in

that deg(E/F) = deg(F[β]/F) = n. In this case, up to translation, there is a unique choice
for Λ given by {piE : i ∈ Z}.

Definition 6.2. A (positive depth) cuspidal R-representation of G is called minimax if it
contains a minimax stratum [Λ,m,m− 1, β] such that HomU⌊m/2⌋+1(Λ)(ψβ, π) ̸= 0. (In other

words, it also contains the simple stratum [Λ,m, 0, β] following Bushnell and Kutzko’s termi-
nology.)

Remark 6.3. Every minimax cuspidal R-representation is supercuspidal – cf., [Vig96, III
5.14].

6.3. Minimax characters. Let [Λ,m, 0, β] be a simple stratum in A such that [Λ,m,m −
1, β] is a minimax stratum in A. We identify V with E = F[β] as an F-vector space via the
choice of (ordered) F-basis

B = {1, β, β2, . . . , βn−1}.
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We write e = e(E/F). With respect to the basis B, which we call the companion basis
to [Λ,m, 0, β], β is in companion matrix form:

β =


−a0

1 −a1
. . .

...
1 −an−1


where fβ(X) = Xn + an−1X + · · ·+ a0 is the minimal polynomial of β. We have

νF(a0) = −mn/e, νF(ai) ⩾ −m(n− i)/e.

This basis has the nice property that the restriction of ψβ to upper triangular unipotent

matrices Un (intersected with U⌊m/2⌋+1(Λ)), agrees with the standard non-degenerate char-
acter Ψ(x) = ψ(x1,2+ · · ·+xn−1,n). However, with respect to this basis, the principal order A
is not, in general, standard.

Set

H1 = (1 + pE)U
⌊m/2⌋+1(Λ), J1 = (1 + pE)U

⌊(m+1)/2⌋(Λ)

J = o×EU
⌊(m+1)/2⌋(Λ), J = E×U⌊(m+1)/2⌋(Λ).

(The centres of these groups are equal to their intersections with F×.)
The set of simple characters of H1 associated to [A,m, 0, β] is

C(Λ, β) = {θ ∈ Hom(H1,R×) : θ |U⌊m/2⌋+1(Λ)= ψβ}.

As E× normalizes Λ, U⌊m/2⌋+1(Λ) is a normal subgroup of H1.
Given θ ∈ C(Λ, β), we set

ηθ = indJ
1

(Un∩J1)H1(θψ)

where θψ(uh) = Ψ(u)θ(h) (note that, Un ∩ H1 = Un ∩ U⌊m/2⌋+1(Λ) and Ψ and θ clearly
agree on this intersection). The representation ηθ is the unique irreducible representation
of J1 containing θ (from the theory of Heisenberg representations). Notice if m is odd, we
have H1 = J1 and ηθ = θ. The representation ηθ extends to J, choose any extension λ of ηθ,
then

π = indGJ (λ)

is irreducible, minimax, and supercuspidal (and all minimax supercuspidals arise in this way).
The ramification index and inertial degree of E/F are invariants of π and we write e(π) =
e(E/F) and f(π) = f(E/F).

6.4. Newform vectors in minimax cuspidals. Recall that Σn denotes the diagonal ma-
trix diag(ϖn−1

F , ϖn−2
F , . . . , 1). We start with a basic lemma:

Lemma 6.4. Let [Λ,m, 0, β] be a simple stratum in A such that [Λ,m,m−1, β] is a minimax

stratum in A, and write U⌊m/2⌋+1(Λ) with respect to the companion basis of [Λ,m, 0, β]. Then

ψβ |U⌊m/2⌋+1(Λ)∩ΣnKn(n(1+m/e))
= 1.

Proof. For x = (xi,j) ∈ U⌊m/2⌋+1(Λ) the character ψβ is given explicitly by

ψβ(x) = ψ

(
n−1∑
i=1

xi,i+1 −
n−1∑
i=1

ai−1xn,i − an−1(xn,n − 1)

)
.
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Suppose now that x ∈ ΣnKn(n(1 +m/e)) and note that

ΣnKn(n(1 +m/e)) =



o p p2 · · ·
p−1 o p

. . .
. . .

. . .

pnm/e+1 pnm/e+2 · · · pnm/e+(n−1) 1 + pn(m/e+1)


.

Hence xi,i+1 is an element of p for i = 1, , . . . , n− 1 and

ψ

(
n−1∑
i=1

xi,i+1

)
= 1.

Moreover, since νF(ai) ⩾ −m(n − i)/e we obtain that ai−1xn,i ∈ p for i = 1, . . . , n − 2 and
an−1(xn,n − 1) ∈ p which implies the result. □

To go further than this we specialize to minimax representations of integral depth. Note
that a minimax cuspidal π is of integral depth if and only if e(π) = 1. Let π be a minimax
cuspidal with e(π) = 1 and let [Λ,m,m − 1, β] be a minimax stratum contained in π. Note
that π is of integral depth is equivalent to the extension E = F[β] being unramified. We
change basis from B to

B′ = {ϖkmβk : 0 ⩽ k ⩽ n− 1}.

With respect to this basis

Λ(i) =
⊕

piF;

A(Λ) = Mn(o), P(Λ) = Mn(pF)

β =


−ϖ(n−1)ma0

ϖ−m −ϖ(n−2)ma1
. . .

...
ϖ−m −an−1

 .

(In particular, Ur(Λ) = 1 +Mn(p
r).)

Moreover, in this basis, the character ψβ is given explicitly by

ψβ(x) = ψ

((
ϖ−m

n−1∑
i=1

xi,i+1

)
−

(
n−1∑
i=1

ϖ(n−i)mai−1xn,i

)
− an−1(xn,n − 1)

)

where x = (xij), which on upper triangular unipotent matrices Un agrees with the non-

degenerate character ψtm where tm = diag(ϖ(n−1)m, ϖ(n−2)m, . . . , 1).
As explained in the last section, there is a simple character θ ∈ C(Λ, β), and an extension λ

of ηθ to J such that π ≃ indGJ (λ). By Bushnell’s formula, and Proposition 3.4 in the modular
setting, c(π) = n(m+ 1). Let

Σm,n = diag(ϖ(m+1)(n−1), ϖ(m+1)(n−2), . . . , ϖm+1, 1) = tmΣn,
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then

Σm,nKn(n(m+ 1)) =



o pm+1 · · ·
p−m−1 o pm+1

. . .
. . .

. . .

pm+1 p2(m+1) · · · p(n−1)(m+1) 1 + pn(m+1)


.

The aim of this section is to prove:

Theorem 6.5. Let n ⩾ 2 and Λ, β,B′ as above. Let π = indGnJ (λ) be a unramified minimax
cuspidal R-representation with cuspidal R-type (J, λ), and containing [Λ,m, 0, β].

(1) Then c(π) = n(m+ 1) and HomR[Kn(c(π))](1, π) ≃ R.

(2) The unique (normalized at the identity) non-zero newform fnew ∈ πKn(n(m+1)) is given
by

supp(fnew) ⊆ JΣm,nKn(n(m+ 1))

fnew(jΣm,nk) = λ(j)δ

for all j ∈ J, k ∈ Kn(n(m+ 1)), and

δ = [(J1 ∩ Σm,nKn(n(m+ 1))) : ((U ∩ J1)H1 ∩ Σm,nKn(n(m+ 1)))]−1∑
(J1∩Σm,nKn(n(m+1)))/((U∩J1)H1∩Σm,nKn(n(m+1)))

g · J,

where J ∈W (λ, θψ) ⊆ indJ(U∩J1)H1(θψ) is the Paskunas–Stevens Bessel function.

We need the following basic lemma on intersections:

Lemma 6.6. (1) H1 ∩ Σm,nKn(n(m+ 1)) = U⌊m/2⌋+1(Λ) ∩ Σm,nKn(n(m+ 1)).

(2) (U∩J1)H1∩Σm,nKn(n(m+1)) = (U∩U⌊m+1/2⌋(Λ))U⌊m/2⌋+1(Λ)∩Σm,nKn(n(m+1)).
(3) J ∩ Σm,nKn(n(m+ 1)) = J1 ∩ Σm,nKn(n(m+ 1)).

Proof. All these statements follow from the following one: for all 1 ⩽ r ⩽ m + 1, for p ∈
Pn, x ∈ oE, and u ∈ Ur(Λ)

pxu ∈ Σm,nKn(n(m+ 1)) ⇒ x ∈ 1 + prE,

where Pn here denotes the standard mirabolic subgroup. As ϖmβ + pE generates kE/kF we
have oE = oF[ϖ

mβ]. Note that ϖmβ ∈ Mn(oF). Since x ∈ oE, we can write

x =
n−1∑
j=0

αj(ϖ
mβ)j ,

where αj ∈ oF. For 1 ⩽ i ⩽ n − 1, let vi denote the bottom row of (ϖmβ)i, then one can
compute that

vi = (0, . . . , 0, 1, rii, . . . , r
i
1),

where ri1, . . . , r
i
i ∈ oF. Set x = (xij), then for 1 ⩽ j ⩽ n, we clearly have that

xnj = αn−j +

j−1∑
l=1

αn−lr
n−l
n−j−1.
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We also write u = (uij), where uij ∈ δi,j + prF. Then the (n, 1)-entry of pxu is equal to

αn−1u11 +
n∑
j=2

xnjuj1 ∈ prF,

and since u11 ∈ O× and uj1 ∈ prF for j ⩾ 2, we immediately obtain that αn−1 ∈ prF. Suppose
now we have shown that αn−1, . . . , αn−k ∈ prF for some 1 ⩽ k ⩽ n − 1. Then the (n, k + 1)
entry of pxu is

uk+1,k+1

(
αn−k−1 +

k∑
l=1

αn−lr
n−k
n−l

)
+
∑

1⩽j⩽n
j ̸=k+1

xnjuj,k+1 ∈ δn,k+1 + p
(k+1)(m+1)
F ,

which immediately implies that αn−k−1 ∈ prF. Inductively, we obtain that α1, . . . , αn−1 ∈ prF,
and applying the inductive step one more time α0 ∈ 1 + prF. Since prE = prFoE this implies
that x ∈ 1 + prE. □

Proof of Theorem 6.5. We have already seen c(π) = n(m+1) and one dimensionality over R
of characteristic zero follows from [JPSS81]. From Lemma 6.4

ψβ |U⌊m/2⌋+1(Λ)∩Σm,nKn(n(m+1))= 1.

By Lemma 6.6 (1), it follows that for any θ ∈ C(Λ, β)

θ |H1∩Σm,nKn(n(m+1))= ψβ |U⌊m/2⌋+1(Λ)∩Σm,nKn(n(m+1))= 1.

Next we claim that θψ |(Un∩J1)H1∩Σm,nKn(n(m+1))= 1. Indeed, via Lemma 6.6 (2), we can

write x ∈ (Un ∩ J1)H1 ∩ Σm,nKn(n(m+1)) as x = uu′ with u ∈ (Un ∩U⌊m+1/2⌋(Λ)), and u′ ∈
U⌊m/2⌋+1(Λ). Moreover, the final row of u′ is contained in ( pm+1

F ···p(n−1)(m+1)
F (1+p

n(m+1)
F ) )

hence ψβ(u
′) = ψ(ϖ−m∑n−1

i=1 u
′
i,i+1) and it suffices to notice that ui,i+1 + u′i,i+1 ∈ pm+1

F .
This completes the claim.

By Mackey theory and Frobenius reciprocity, we have an embedding

Φ : R = Hom(Un∩J1)H1∩Σm,nKn(n(m+1))(1, θψ) ↪→ HomJ1∩Σm,nKn(n(m+1))(1, ind
J1

(Un∩J1)H1(θψ)).

Moreover, from Lemma 6.6 (3), we have

HomJ∩Σm,nKn(n(m+1))(1,λ) = HomJ1∩Σm,nKn(n(m+1))(1, ind
J1

(Un∩J1)H1(θψ)),

and it follows from one dimensionality over algebraically closed fields of characteristic zero
that Φ is an isomorphism.

Moreover, it follows from reduction mod ℓ, that

HomJ1∩Σm,nKn(n(m+1))(1, ind
J1

(Un∩J1)H1(θψ)) = R

for all algebraically closed fields (as it is a Hom-space over a pro-p group and ℓ ̸= p), which
allows us to deduce the one dimensionality in positive characteristic too (as all lifts are
contributing the same Hom-space, this is the unique one mod ℓ and has dimension one by
the previous lifting argument). The explicit form of the vector fnew follows from reversing
the Mackey theory. □
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